In this video I try out what Simplify3D refer to on their website as “Strong Foundations”. What this actually means is that in version 4 they have added a couple of new settings to improve the bed adhesion and overall strength of support material.
I look at what these new settings do and what that could mean for support structures – especially if you have ever had issues with the supports lifting off the printer bed.
In the fourth video showing the changes in Simplify3D I look at two new features that both rely on one main change – the ability for Simplify3D to attempt varying the extrusion width dynamically.
The first feature, “Variable Extrusion Sizing”, permits you to attempt to print features that might otherwise just not print at all, where the total feature size is very small. I demonstrate that this works to very good effect.
The second feature, “Dynamic Gap Fill”, comes in very handy where you have features that in the past left gaps between perimeters and infill, or between two perimeters on very small features. It fills in these gaps with filament which is extruded at a smaller width that your general settings allow.
After banging on about it for months, I finally get around to trying ABS filament on my DIY Prusa. I heard lots of bad things about trying to print ABS, especially without an enclosure, so I was ready for the worst. Expectations were set low 😉
In this video I go through, in quite a lot of detail (!), my initial slicer settings, run some test prints and think about the results….
In this video I finally get to make the first print… I know how it turned out but you will have to watch to see 😉
Before the printing fun could begin, I needed to take care of some minor things, and one slightly more important thing – the power supply for the heated bed!
For the moment all power for the printer is temporary so I make use of a 12v power supply that I already had. It doesn’t have the output to deliver power to all, but it should take care of the heated bed and I will continue to use the lab supply for the rest.
I also made a few final (before first print!!) changes to Configuration.h and slice up the model using the Prusa version of Slic3r that you can download here. (Also contains the version of Pronterface I am using).
If you want to see how my Configutation.h looks at this stage – grab it here .
As I mentioned in the last post, after building up the extruder/hot end assembly I tried to feed some filament into it as you would in normal use. I noticed that this could only be done by opening the tensioner and having to use a screwdriver to push the filament so that it lined up with the teflon tube.
Shaded area represents the straight path
Even once you have done that, because of the forced curve in the filament around the gear, it is very tight to push the filament down through the hot end.
The basic issue is that hole in the extruder body which fits the teflon tube and the hole in the top where you insert filament are offset from the surface of the hobbed gear. I am going to guess the the MK8 hobbed gear is a slightly larger diameter than that the body part was designed for.
I have already filed the left side hole out in these photos
By drilling/filing out both holes I have reduced the problem considerably, moving the filament is a lot easier but it is still not great. I know that the extruder stepper and driver already are a bit limited on power so the additional friction cause by this situation isn’t good.
I will see how it works once I start printing. There are solutions, but nothing that simple. You quickly run out of material around both holes if you drill out anything more than 5mm. Also there is then nothing holding the teflon tube in place.